资源论文Exploiting k-Degree Locality to Improve Overlapping Community Detection

Exploiting k-Degree Locality to Improve Overlapping Community Detection

2019-11-19 | |  66 |   45 |   0
Abstract Community detection is of crucial importance in understanding structures of complex networks. In many real-world networks, communities naturally overlap since a node usually has multiple community memberships. One popular technique to cope with overlapping community detection is Matrix Factorization (MF). However, existing MFbased models have ignored the fact that besides neighbors, “local non-neighbors” (e.g., my friend’s friend but not my direct friend) are helpful when discovering communities. In this paper, we propose a Locality-based Non-negative Matrix Factorization (LNMF) model to refine a preference-based model by incorporating locality into learning objective. We define a subgraph called “k-degree local network” to set a boundary between local nonneighbors and other non-neighbors. By discriminately treating these two class of non-neighbors, our model is able to capture the process of community formation. We propose a fast sampling strategy within the stochastic gradient descent based learning algorithm. We compare our LNMF model with several baseline methods on various real-world networks, including large ones with ground-truth communities. Results show that our model outperforms state-of-the-art approaches.

上一篇:A Unified Probabilistic Model of User Activities and Relations on Social Networking Sites

下一篇:Catch the Black Sheep: Unified Framework for Shilling Attack Detection Based on Fraudulent Action Propagation

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...