资源论文Scalable Gaussian Process Regression Using Deep Neural Networks

Scalable Gaussian Process Regression Using Deep Neural Networks

2019-11-20 | |  74 |   35 |   0
Abstract We propose a scalable Gaussian process model for regression by applying a deep neural network as the feature-mapping function. We first pre-train the deep neural network with a stacked denoising auto-encoder in an unsupervised way. Then, we perform a Bayesian linear regression on the top layer of the pre-trained deep network. The resulting model, Deep-Neural-Network-based Gaussian Process (DNN-GP), can learn much more meaningful representation of the data by the finite-dimensional but deep-layered feature-mapping function. Unlike standard Gaussian processes, our model scales well with the size of the training set due to the avoidance of kernel matrix inversion. Moreover, we present a mixture of DNN-GPs to further improve the regression performance. For the experiments on three representative large datasets, our proposed models significantly outperform the state-of-the-art algorithms of Gaussian process regression.

上一篇:A New Simplex Sparse Learning Model to Measure Data Similarity for Clustering

下一篇:Training-Time Optimization of a Budgeted Booster

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...