资源论文Recovery of Corrupted Multiple Kernels for Clustering

Recovery of Corrupted Multiple Kernels for Clustering

2019-11-20 | |  66 |   60 |   0
Abstract Kernel-based methods, such as kernel k-means and kernel PCA, have been widely used in machine learning tasks. The performance of these methods critically depends on the selection of kernel functions; however, the challenge is that we usually do not know what kind of kernels is suitable for the given data and task in advance; this leads to research on multiple kernel learning, i.e. we learn a consensus kernel from multiple candidate kernels. Existing multiple kernel learning methods have difficulty in dealing with noises. In this paper, we propose a novel method for learning a robust yet lowrank kernel for clustering tasks. We observe that the noises of each kernel have specific structures, so we can make full use of them to clean multiple input kernels and then aggregate them into a robust, low-rank consensus kernel. The underlying optimization problem is hard to solve and we will show that it can be solved via alternating minimization, whose convergence is theoretically guaranteed. Experimental results on several benchmark data sets further demonstrate the effectiveness of our method.

上一篇:MUVIR: Multi-View Rare Category Detection

下一篇:Learning a Robust Consensus Matrix for Clustering Ensemble via Kullback-Leibler Divergence Minimization

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...