资源论文Controllable Procedural Content Generation via Constrained Multi-Dimensional Markov Chain Sampling

Controllable Procedural Content Generation via Constrained Multi-Dimensional Markov Chain Sampling

2019-11-22 | |  49 |   51 |   0
Abstract Statistical models, such as Markov chains, have recently started to be studied for the purpose of Procedural Content Generation (PCG). A major problem with this approach is controlling the sampling process in order to obtain output satisfying some desired constraints. In this paper we present three approaches to constraining the content generated using multi-dimensional Markov chains: (1) a generate and test approach that simply resamples the content until the desired constraints are satisfied, (2) an approach that finds and resamples parts of the generated content that violate the constraints, and (3) an incremental method that checks for constraint violations during sampling. We test our approaches by generating maps for two classic video games, Super Mario Bros. and Kid Icarus.

上一篇:Optimizing Molecular Cloning of Multiple Plasmids

下一篇:Optimizing Simple Tabular Reduction with a Bitwise Representation

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...