资源论文Mixture Density Generative Adversarial Networks

Mixture Density Generative Adversarial Networks

2019-09-17 | |  85 |   44 |   0 0 0
Abstract Generative Adversarial Networks have a surprising ability to generate sharp and realistic images, but they are known to suffer from the so-called mode collapse problem. In this paper, we propose a new GAN variant called Mixture Density GAN that overcomes this problem by encouraging the Discriminator to form clusters in its embedding space, which in turn leads the Generator to exploit these and discover different modes in the data. This is achieved by positioning Gaussian density functions in the corners of a simplex, using the resulting Gaussian mixture as a likelihood function over discriminator embeddings, and formulating an objective function for GAN training that is based on these likelihoods. We show how formation of these clusters changes the probability landscape of the discriminator and improves the mode discovery of the GAN. We also show that the optimum of our training objective is attained if and only if the generated and the real distribution match exactly. We support our theoretical results with empirical evaluations on three mode discovery benchmark datasets (Stacked-MNIST, Ring of Gaussians and Grid of Gaussians), and four image datasets (CIFAR- 10, CelebA, MNIST, and Fashion-MNIST). Furthermore, we demonstrate (1) the ability to avoid mode collapse and discover all the modes and (2) superior quality of the generated images (as measured by the Frechet Inception Distance ´ (FID)), achieving the lowest FID compared to all baselines.

上一篇:MirrorGAN: Learning Text-to-image Generation by Redescription

下一篇:Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...