资源论文Incorporating External Knowledge into Crowd Intelligence for More Specific Knowledge Acquisition

Incorporating External Knowledge into Crowd Intelligence for More Specific Knowledge Acquisition

2019-11-22 | |  64 |   57 |   0
Abstract Crowdsourcing has been a helpful mechanism to leverage human intelligence to acquire useful knowledge for well defined tasks. However, when aggregating the crowd knowledge based on the currently developed voting algorithms, it often results in common knowledge that may not be expected. In this paper, we consider the problem of collecting as specific as possible knowledge via crowdsourcing. With the help of using external knowledge base such as WordNet, we incorporate the semantic relations between the alternative answers into a probabilistic model to determine which answer is more specific. We formulate the probabilistic model considering both worker’s ability and task’s difficulty, and solve it by expectation-maximization (EM) algorithm. Experimental results show that our approach achieved 35.88% improvement over majority voting when more specific answers are expected.

上一篇:Deep Learning for Reward Design to Improve Monte Carlo Tree Search in ATARI Games

下一篇:Partially Supervised Graph Embedding for Positive Unlabelled Feature Selection

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...