资源论文Object-Based World Modeling in Semi-Static Environments with Dependent Dirichlet Process Mixtures

Object-Based World Modeling in Semi-Static Environments with Dependent Dirichlet Process Mixtures

2019-11-25 | |  87 |   40 |   0

Abstract To accomplish tasks in human-centric indoor environments, agents need to represent and understand the world in terms of objects and their attributes. We consider how to acquire such a world model via noisy perception and maintain it over time, as objects are added, changed, and removed in the world. Previous work framed this as multiple-target tracking problem, where objects are potentially in motion at all times. Although this approach is general, it is computationally expensive. We argue that such generality is not needed in typical world modeling tasks, where objects only change state occasionally. More efficient approaches are enabled by restricting ourselves to such semi-static environments. We consider a previously-proposed clusteringbased world modeling approach that assumed static environments, and extend it to semi-static domains by applying a dependent Dirichlet process (DDP) mixture model. We derive a novel MAP inference algorithm under this model, subject to data association constraints. We demonstrate our approach improves computational performance for world modeling in semi-static environments.

上一篇:Crowd Scene Understanding with Coherent Recurrent Neural Networks

下一篇:Enforcing Template Representability and Temporal Consistency for Adaptive Sparse Tracking

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...