资源论文Proximal Gradient Temporal Difference Learning Algorithms

Proximal Gradient Temporal Difference Learning Algorithms

2019-11-25 | |  60 |   36 |   0
Abstract In this paper, we describe proximal gradient temporal difference learning, which provides a principled way for designing and analyzing true stochastic gradient temporal difference learning algorithms. We show how gradient TD (GTD) reinforcement learning methods can be formally derived, not with respect to their original objective functions as previously attempted, but rather with respect to primal-dual saddle-point objective functions. We also conduct a saddle-point error analysis to obtain finite-sample bounds on their performance. Previous analyses of this class of algorithms use stochastic approximation techniques to prove asymptotic convergence, and no finite-sample analysis had been attempted. An accelerated algorithm is also proposed, namely GTD2-MP, which use proximal “mirror maps” to yield acceleration. The results of our theoretical analysis imply that the GTD family of algorithms are comparable and may indeed be preferred over existing least squares TD methods for off-policy learning, due to their linear complexity. We provide experimental results showing the improved performance of our accelerated gradient TD methods.

上一篇:Deep Neural Decision Forests

下一篇:Generating Tests for Robotized Painting Using Constraint Programming

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...