资源论文A Generalized Matching Pursuit Approach for Graph-Structured Sparsity

A Generalized Matching Pursuit Approach for Graph-Structured Sparsity

2019-11-25 | |  90 |   38 |   0
Abstract Sparsity-constrained optimization is an important and challenging problem that has wide applicability in data mining, machine learning, and statistics. In this paper, we focus on sparsity-constrained optimization in cases where the cost function is a general nonlinear function and, in particular, the sparsity constraint is defined by a graph-structured sparsity model. Existing methods explore this problem in the context of sparse estimation in linear models. To the best of our knowledge, this is the first work to present an efficient approximation algorithm, namely, G RAPH-structured Matching Pursuit (G RAPH-M P), to optimize a general nonlinear function subject to graph-structured constraints. We prove that our algorithm enjoys the strong guarantees analogous to those designed for linear models in terms of convergence rate and approximation accuracy. As a case study, we specialize G RAPHM P to optimize a number of well-known graph scan statistic models for the connected subgraph detection task, and empirical evidence demonstrates that our general algorithm performs superior over stateof-the-art methods that are designed specifically for the task of connected subgraph detection.

上一篇:A Characterization of the Semantics of Logic Programs with Aggregates

下一篇:Cost-Aware Pre-Training for Multiclass Cost-Sensitive Deep Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...