资源论文A Unifying Framework for Learning Bag Labels from Generalized Multiple-Instance Data

A Unifying Framework for Learning Bag Labels from Generalized Multiple-Instance Data

2019-11-25 | |  97 |   55 |   0
Abstract We study the problem of bag-level classification from generalized multiple-instance (GMI) data. GMI learning is an extension of the popular multiple-instance setting. In GMI data, bags are labeled positive if they contain instances of certain types, and avoid instances of other types. For example, an image of a “sunny beach” should contain sand and sea, but not clouds. We formulate a novel generative process for the GMI setting in which bags are distributions over instances. In this model, we show that a broad class of distribution-distance kernels is sufficient to represent arbitrary GMI concepts. Further, we show that a variety of previously proposed kernel approaches to the standard MI and GMI settings can be unified under the distribution kernel framework. We perform an extensive empirical study which indicates that the family of distribution distance kernels is accurate for a wide variety of real-world MI and GMI tasks as well as efficient when compared to a large set of baselines. Our theoretical and empirical results indicate that distribution-distance kernels can serve as a unifying framework for learning bag labels from GMI (and therefore MI) problems.

上一篇:Cost-Aware Pre-Training for Multiclass Cost-Sensitive Deep Learning

下一篇:Learning Unified Features from Natural and Programming Languages for Locating Buggy Source Code

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...