资源论文Manhattan Scene Understanding Via XSlit Imaging

Manhattan Scene Understanding Via XSlit Imaging

2019-11-27 | |  35 |   33 |   0
Abstract A Manhattan World (MW) [3] is composed of planar surfaces and parallel lines aligned with three mutually orthogonal principal axes. Traditional MW understanding algorithms rely on geometry priors such as the vanishing points and reference (ground) planes for grouping coplanar structures. In this paper, we present a novel single-image MW reconstruction algorithm from the perspective of nonpinhole cameras. We show that by acquiring the MW using an XSlit camera, we can instantly resolve coplanarity ambiguities. Speci?cally, we prove that parallel 3D lines map to 2D curves in an XSlit image and they converge at an XSlit Vanishing Point (XVP). In addition, if the lines are coplanar, their curved images will intersect at a second common pixel that we call Coplanar Common Point (CCP). CCP is a unique image feature in XSlit cameras that does not exist in pinholes. We present a comprehensive theory to analyze XVPs and CCPs in a MW scene and study how to recover 3D geometry in a complex MW scene from XVPs and CCPs. Finally, we build a prototype XSlit camera by using two layers of cylindrical lenses. Experimental results on both synthetic and real data show that our new XSlitcamera-based solution provides an effective and reliable solution for MW understanding.

上一篇:An iterated 1 Algorithm for Non-smooth Non-convex Optimization in Computer Vision

下一篇:Robust Multi-Resolution Pedestrian Detection in Traffic Scenes

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...