资源论文Depth Super Resolution by Rigid Body Self-Similarity in 3D

Depth Super Resolution by Rigid Body Self-Similarity in 3D

2019-11-27 | |  29 |   27 |   0
Abstract We tackle the problem of jointly increasing the spatial resolution and apparent measurement accuracy of an input low-resolution, noisy, and perhaps heavily quantized depth map. In stark contrast to earlier work, we make no use of ancillary data like a color image at the target resolution, multiple aligned depth maps, or a database of highresolution depth exemplars. Instead, we proceed by identifying and merging patch correspondences within the input depth map itself, exploiting patchwise scene self-similarity across depth such as repetition of geometric primitives or object symmetry. While the notion of ‘single-image’ super resolution has successfully been applied in the context of color and intensity images, we are to our knowledge the ?rst to present a tailored analogue for depth images. Rather than reason in terms of patches of 2D pixels as others have before us, our key contribution is to proceed by reasoning in terms of patches of 3D points, with matched patch pairs related by a respective 6 DoF rigid body motion in 3D. In support of obtaining a dense correspondence ?eld in reasonable time, we introduce a new 3D variant of PatchMatch. A third contribution is a simple, yet effective patch upscaling and merging technique, which predicts sharp object boundaries at the target resolution. We show that our results are highly competitive with those of alternative tec niques leveraging even a color image at the target resolution or a database of high-resolution depth exemplars.

上一篇:Bayesian Depth-from-Defocus with Shading Constraints

下一篇:Layer Depth Denoising and Completion for Structured-Light RGB-D Cameras

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...