资源论文A Low Power, Fully Event-Based Gesture Recognition System

A Low Power, Fully Event-Based Gesture Recognition System

2019-11-27 | |  56 |   38 |   0
Abstract We present the first gesture recognition system implemented end-to-end on event-based hardware, using a TrueNorth neurosynaptic processor to recognize hand gestures in real-time at low power from events streamed live by a Dynamic Vision Sensor (DVS). The biologically inspired DVS transmits data only when a pixel detects a change, unlike traditional frame-based cameras which sample every pixel at a fixed frame rate. This sparse, asynchronous data representation lets event-based cameras operate at much lower power than frame-based cameras. However, much of the energy efficiency is lost if, as in previous work, the event stream is interpreted by conventional synchronous processors. Here, for the first time, we process a live DVS event stream using TrueNorth, a natively event-based processor with 1 million spiking neurons. Configured here as a convolutional neural network (CNN), the TrueNorth chip identifies the onset of a gesture with a latency of 105 ms while consuming less than 200mW. The CNN achieves 96.5% out-of-sample accuracy on a newly collected DVS dataset (DvsGesture) comprising 11 hand gesture categories from 29 subjects under 3 illumination conditions

上一篇:A general framework for curve and surface comparison and registration with oriented varifolds

下一篇:A Matrix Splitting Method for Composite Function Minimization

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...