资源论文Fast Patch-based Denoising Using Approximated Patch Geodesic Paths

Fast Patch-based Denoising Using Approximated Patch Geodesic Paths

2019-11-28 | |  86 |   41 |   0

Abstract Patch-based methods such as Non-Local Means (NLM) and BM3D have become the de facto gold standard for image denoising. The core of these approaches is to use similar patches within the image as cues for denoising. The operation usually requires expensive pair-wise patch comparisons. In this paper, we present a novel fast patch-based denoising technique based on Patch Geodesic Paths (PatchGP). PatchGPs treat image patches as nodes and patch differences as edge weights for computing the shortest (geodesic) paths. The path lengths can then be used as weights of the smoothing/denoising kernel. We fifirst show that, for natural images, PatchGPs can be effectively approximated by minimum hop paths (MHPs) that generally correspond to Euclidean line paths connecting two patch nodes. To construct the denoising kernel, we further discretize the MHP search directions and use only patches along the search directions. Along each MHP, we apply a weight propagation scheme to robustly and effificiently compute the path distance. To handle noise at multiple scales, we conduct wavelet image decomposition and apply PatchGP scheme at each scale. Comprehensive experiments show that our approach achieves comparable quality as the state-of-the-art methods such as NLM and BM3D but is a few orders of magnitude faster.

上一篇:Separating Signal from Noise using Patch Recurrence Across Scales

下一篇:Least Soft-thresold Squares Tracking

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...