资源论文GeoF: Geodesic Forests for Learning Coupled Predictors

GeoF: Geodesic Forests for Learning Coupled Predictors

2019-11-28 | |  106 |   54 |   0

Abstract Conventional decision forest based methods for image labelling tasks like object segmentation make predictions for each variable (pixel) independently [3, 5, 8]. This prevents them from enforcing dependencies between variables and translates into locally inconsistent pixel labellings. Random fifield models, instead, encourage spatial consistency of labels at increased computational expense. This paper presents a new and effificient forest based model that achieves spatially consistent semantic image segmentation by encoding variable dependencies directly in the feature space the forests operate on. Such correlations are captured via new long-range, soft connectivity features, computed via generalized geodesic distance transforms. Our model can be thought of as a generalization of the successful Semantic Texton Forest, Auto-Context, and Entangled Forest models. A second contribution is to show the connection between the typical Conditional Random Field (CRF) energy and the forest training objective. This analysis yields a new objective for training decision forests that encourages more accurate structured prediction. Our GeoF model is validated quantitatively on the task of semantic image segmentation, on four challenging and very diverse image datasets. GeoF outperforms both stateof-the-art forest models and the conventional pairwise CRF

上一篇:Statistical Textural Distinctiveness for Salient Region Detectionin Natural Images

下一篇:Efficient Maximum Appearance Search for Large-Scale Object Detection

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...