资源论文Optimal Geometric Fitting Under the Truncated L2-Norm

Optimal Geometric Fitting Under the Truncated L2-Norm

2019-11-28 | |  69 |   52 |   0

Abstract This paper is concerned with model fifitting in the presence of noise and outliers. Previously it has been shown that the number of outliers can be minimized with polynomial complexity in the number of measurements. This paper improves on these results in two ways. First, it is shown that for a large class of problems, the statistically more desirable truncated L2-norm can be optimized with the same complexity. Then, with the same methodology, it is shown how to transform multi-model fifitting into a purely combinatorial problem—with worst-case complexity that is polynomial in the number of measurements, though exponential in the number of models. We apply our framework to a series of hard registration and stitching problems demonstrating that the approach is not only of theoretical interest. It gives a practical method for simultaneously dealing with measurement noise and large amounts of outliers for fifitting problems with lowdimensional models

上一篇:Robust Real-Time Tracking of Multiple Objects by Volumetric Mass Densities

下一篇:Label-Embedding for Attribute-Based Classification

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...