资源算法TDD

TDD

2019-09-18 | |  175 |   0 |   0

Trajectory-Pooled Deep-Convolutional Descriptors (TDD)

Here we provide the code for the extraction of Trajectory-Pooled Deep-Convolutional Descriptors (TDD), from the following paper:

Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors
Limin Wang, Yu Qiao, and Xiaou Tang, in CVPR, 2015

Two-stream CNN models trained on the UCF101 dataset

First, we provide our trained two-stream CNN models on the split1 of UCF101 dataset, which achieve the recognition accuracy of 84.7%

"Spatial net model"

"Spatial net prototxt" "Temporal net model" "Temporal net prototxt"

TDD demo code

Here, a matlab demo code for TDD extraction is released.

  • Step 1: Improved Trajectory Extraction

You need download our modified iDT feature code and compile it by yourself. Improved Trajectories

  • Step 2: TVL1 Optical Flow Extraction

  • You need download our dense flow code and compile it by yourself. Dense Flow
  • Step 3: Mat Caffe

  • You need download the public caffe toolbox. Our TDD code is compatatible with previous version of Caffe
  • Step 4: TDD Extraction

  • Now you can run the matlab file "script_demo.m" to extract TDD features.

    Questions

    Contact - Limin Wang


上一篇:binary_net

下一篇:mixup_pytorch

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...