资源算法rl-multishot-reid

rl-multishot-reid

2019-09-18 | |  169 |   0 |   0

Multi-shot Re-identification Based on Reinforcement Learning


Training and testing codes for multi-shot Re-Identification. Currently, these codes are tested on the PRID-2011 dataset, iLiDS-VID dataset and MARS dataset. For algorithm details and experiment results, please refer our paper: Multi-shot Pedestrian Re-identification via Sequential Decision Making

Preparations


Before starting running this code, you should make the following preparations:

  • Download the MARS , iLIDS-VID and PRID-2011.

  • Install MXNet following the instructions and install the python interface. Currently the repo is tested on commit e06c55.

Usage


  • Download the datasets and unzip.

  • Prepare data file. Generate image list file according to the file preprocess_ilds_image.py , preprocess_prid_image.py and preprocess_mars_image.py under baseline folder.

  • The code is split to two stage, the first stage is a image based re-id task, please refer the script run.sh in baseline folder. The codes for this stage is based on this repo. The usage is:

sh run.sh $gpu $dataset $network $recfloder

e.g. If you want to train MARS dataset on gpu 0 using inception-bn, please run:

sh run.sh 0 MARS inception-bn /data3/matt/MARS/recs
  • The second stage is a multi-shot re-id task based on reinforcement learning. Please refer the script run.sh in RL folder. The usage is:

sh run.sh $gpu $unsure-penalty $dataset $network $recfloder
  • For evaluation, please use baseline/baseline_test.py and RL/find_eg.py. In RL/find_eg.py, we also show some example episodes with good quality generated by our algorithm.


上一篇:SEAL-CI

下一篇:pytorch-smoothgrad

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • allennlp-dureader

    An Apache 2.0 NLP research library, built on Py...

  • honk-honk-motherf...

    honk-honk-motherfucker