资源论文Dynamic Time-of-Flight

Dynamic Time-of-Flight

2019-12-02 | |  54 |   41 |   0
Abstract Time-of-flight (TOF) depth cameras provide robust depth inference at low power requirements in a wide variety of consumer and industrial applications. These cameras reconstruct a single depth frame from a given set of infrared (IR) frames captured over a very short exposure period. Operating in this mode the camera essentially forgets all information previously captured - and performs depth inference from scratch for every frame. We challenge this practice and propose using previously captured information when inferring depth. An inherent problem we have to address is camera motion over this longer period of collecting observations. We derive a probabilistic framework combining a simple but robust model of camera and object motion, together with an observation model. This combination allows us to integrate information over multiple frames while remaining robust to rapid changes. Operating the camera in this manner has implications in terms of both computational efficiency and how information should be captured. We address these two issues and demonstrate a realtime TOF system with robust temporal integration that improves depth accuracy over strong baseline methods including adaptive spatio-temporal filters.

上一篇:Dynamic FAUST: Registering Human Bodies in Motion

下一篇:ECO: Efficient Convolution Operators for Tracking

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to learn...

    The move from hand-designed features to learned...