资源论文Understanding Traffic Density from Large-Scale Web Camera Data

Understanding Traffic Density from Large-Scale Web Camera Data

2019-12-05 | |  60 |   47 |   0
Abstract Understanding traffic density from large-scale web camera (webcam) videos is a challenging problem because such videos have low spatial and temporal resolution, high occlusion and large perspective. To deeply understand traffic density, we explore both optimization based and deep learning based methods. To avoid individual vehicle detection or tracking, both methods map the dense image feature into vehicle density, one based on rank constrained regression and the other based on fully convolutional networks (FCN). The regression based method learns different weights for different blocks of the image to embed road geometry and significantly reduce the error induced by camera perspective. The FCN based method jointly estimates vehicle density and vehicle count with a residual learning framework to perform end-to-end dense prediction, allowing arbitrary image resolution, and adapting to different vehicle scales and perspectives. We analyze and compare both methods, and get insights from optimization based method to improve deep model. Since existing datasets do not cover all the challenges in our work, we collected and labelled a largescale traffic video dataset, containing 60 million frames from 212 webcams. Both methods are extensively evaluated and compared on different counting tasks and datasets. FCN based method significantly reduces the mean absolute error (MAE) from 10.99 to 5.31 on the public dataset TRANCOS compared with the state-of-the-art baseline

上一篇:Training object class detectors with click supervision

下一篇:Universal adversarial perturbations

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...