资源论文Understanding Traffic Density from Large-Scale Web Camera Data

Understanding Traffic Density from Large-Scale Web Camera Data

2019-12-05 | |  100 |   96 |   0
Abstract Understanding traffic density from large-scale web camera (webcam) videos is a challenging problem because such videos have low spatial and temporal resolution, high occlusion and large perspective. To deeply understand traffic density, we explore both optimization based and deep learning based methods. To avoid individual vehicle detection or tracking, both methods map the dense image feature into vehicle density, one based on rank constrained regression and the other based on fully convolutional networks (FCN). The regression based method learns different weights for different blocks of the image to embed road geometry and significantly reduce the error induced by camera perspective. The FCN based method jointly estimates vehicle density and vehicle count with a residual learning framework to perform end-to-end dense prediction, allowing arbitrary image resolution, and adapting to different vehicle scales and perspectives. We analyze and compare both methods, and get insights from optimization based method to improve deep model. Since existing datasets do not cover all the challenges in our work, we collected and labelled a largescale traffic video dataset, containing 60 million frames from 212 webcams. Both methods are extensively evaluated and compared on different counting tasks and datasets. FCN based method significantly reduces the mean absolute error (MAE) from 10.99 to 5.31 on the public dataset TRANCOS compared with the state-of-the-art baseline

上一篇:Training object class detectors with click supervision

下一篇:Universal adversarial perturbations

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...