资源论文Weakly Supervised Affordance Detection

Weakly Supervised Affordance Detection

2019-12-05 | |  96 |   93 |   0
Abstract Localizing functional regions of objects or affordances is an important aspect of scene understanding and relevant for many robotics applications. In this work, we introduce a pixel-wise annotated affordance dataset of 3090 images containing 9916 object instances. Since parts of an object can have multiple affordances, we address this by a convolutional neural network for multilabel affordance segmentation. We also propose an approach to train the network from very few keypoint annotations. Our approach achieves a higher affordance detection accuracy than other weakly supervised methods that also rely on keypoint annotations or image annotations as weak supervision

上一篇:Weakly Supervised Actor-Action Segmentation via Robust Multi-Task Ranking

下一篇:What Can Help Pedestrian Detection

用户评价
全部评价

热门资源

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Supervised Descen...

    Many computer vision problems (e.

  • Learning Expressi...

    Facial expression is temporally dynamic event w...