资源算法sqeezenet

sqeezenet

2019-09-18 | |  112 |   0 |   0

Pytorch Squeeznet

Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data.

The definition of Squeezenet model is present model.py. The training procedure resides in the file main.py

Command to train the Squeezenet model on CIFAR 10 data is:

python main.py --batch_size 32 --epoch 10

Other options which can be used are specified in main.py Eg: if you want to use a pretrained_model

python main.py --batch_size 32 --epoch 10 --model_name "pretrained model"

I am currently using SGD for training : learning rate and weight decay are currently updated using a 55 epoch learning rule, this usually gives good performance, but if you want to use something of your own, you can specify it by passing learning_rate and weight_decay parameter like so

python main.py --batch_size 32 --epoch 10 --learning_rate 1e-3 --epoch_55


上一篇:DRQN

下一篇:Yelp Restaurant Photo Classifacation

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...