资源论文Object-aware Dense Semantic Correspondence

Object-aware Dense Semantic Correspondence

2019-12-06 | |  54 |   41 |   0
Abstract This work aims to build pixel-to-pixel correspondences between images from the same visual class but with different geometries and visual similarities. This task is particularly challenging because (i) their visual content is similar only on the high-level structure, and (ii) background clutters keep bringing in noises. To address these problems, this paper proposes an object-aware method to estimate per-pixel correspondences from semantic to low-level by learning a classifier for each selected discriminative grid cell and guiding the localization of every pixel under the semantic constraint. Specifically, an Object-aware Hierarchical Graph (OHG) model is constructed to regulate matching consistency from one coarse grid cell containing whole object(s), to fine grid cells covering smaller semantic elements, and finally to every pixel. A guidance layer is introduced as the semantic constraint on local structure matching. In addition, we propose to learn the important high-level structure for each grid cell in an “objectness-driven” way as an alternative to handcrafted descriptors in defining a better visual similarity. The proposed method has been extensively evaluated on various challenging benchmarks and real-world images. The results show that our method significantly outperforms the state-of-the-arts in terms of semantic flow accuracy

上一篇:Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade

下一篇:Person Search with Natural Language Description

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...