资源论文Deep Learning Human Mind for Automated Visual Classification

Deep Learning Human Mind for Automated Visual Classification

2019-12-06 | |  57 |   39 |   0
Abstract What if we could effectively read the mind and transfer human visual capabilities to computer vision methods? In this paper, we aim at addressing this question by developing the first visual object classifier driven by human brain signals. In particular, we employ EEG data evoked by visual object stimuli combined with Recurrent Neural Networks (RNN) to learn a discriminative brain activity manifold of visual categories in a reading the mind effort. Afterward, we transfer the learned capabilities to machines by training a Convolutional Neural Network (CNN)–based regressor to project images onto the learned manifold, thus allowing machines to employ human brain–based features for automated visual classification. We use a 128-channel EEG with active electrodes to record brain activity of several subjects while looking at images of 40 ImageNet object classes. The proposed RNN-based approach for discriminating object classes using brain signals reaches an average accuracy of about 83%, which greatly outperforms existing methods attempting to learn EEG visual object representations. As for automated object categorization, our human brain–driven approach obtains competitive performance, comparable to those achieved by powerful CNN models and it is also able to generalize over different visual datasets

上一篇:Deep Co-occurrence Feature Learning for Visual Object Recognition

下一篇:Deep Learning of Human Visual Sensitivity in Image Quality Assessment Framework

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...