资源论文Deep Learning with Low Precision by Half-wave Gaussian Quantization

Deep Learning with Low Precision by Half-wave Gaussian Quantization

2019-12-06 | |  65 |   38 |   0
The problem of quantizing the activations of a deep neural network is considered. An examination of the popular binary quantization approach shows that this consists of approximating a classical non-linearity, the hyperbolic tangent, by two functions: a piecewise constant ???? function, which is used in feedforward network computations, and a piecewise linear hard tanh function, used in the backpropagation step during network learning. The problem of approximating the widely used ReLU non-linearity is then considered. An half-wave Gaussian quantizer (HWGQ) is proposed for forward approximation and shown to have ef- ficient implementation, by exploiting the statistics of of network activations and batch normalization operations. To overcome the problem of gradient mismatch, due to the use of different forward and backward approximations, several piece-wise backward approximators are then investigated. The implementation of the resulting quantized network, denoted as HWGQ-Net, is shown to achieve much closer performance to full precision networks, such as AlexNet, ResNet, GoogLeNet and VGG-Net, than previously available low-precision networks, with 1-bit binary weights and 2-bit quantized activations.

上一篇:Deep Learning on Lie Groups for Skeleton-based Action Recognition

下一篇:Deep Metric Learning via Facility Location

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...