资源论文Deeply Aggregated Alternating Minimization for Image Restoration

Deeply Aggregated Alternating Minimization for Image Restoration

2019-12-09 | |  101 |   45 |   0
Abstract Regularization-based image restoration has remained an active research topic in image processing and computer vision. It often leverages a guidance signal captured in different fields as an additional cue. In this work, we present a general framework for image restoration, called deeply aggregated alternating minimization (DeepAM). We propose to train deep neural network to advance two of the steps in the conventional AM algorithm: proximal mapping and ?- continuation. Both steps are learned from a large dataset in an end-to-end manner. The proposed framework enables the convolutional neural networks (CNNs) to operate as a regularizer in the AM algorithm. We show that our learned regularizer via deep aggregation outperforms the recent data-driven approaches as well as the nonlocal-based methods. The flexibility and effectiveness of our framework are demonstrated in several restoration tasks, including single image denoising, RGB-NIR restoration, and depth superresolution

上一篇:Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval

下一篇:Designing Effective Inter-Pixel Information Flow for Natural Image Matting

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...