资源论文Generalized Deep Image to Image Regression

Generalized Deep Image to Image Regression

2019-12-09 | |  101 |   49 |   0
Abstract We present a Deep Convolutional Neural Network architecture which serves as a generic image-to-image regressor that can be trained end-to-end without any further machinery. Our proposed architecture, the Recursively Branched Deconvolutional Network (RBDN), develops a cheap multicontext image representation very early on using an efficient recursive branching scheme with extensive parameter sharing and learnable upsampling. This multi-context representation is subjected to a highly non-linear locality preserving transformation by the remainder of our network comprising of a series of convolutions/deconvolutions without any spatial downsampling. The RBDN architecture is fully convolutional and can handle variable sized images during inference. We provide qualitative/quantitative results on 3 diverse tasks: relighting, denoising and colorization and show that our proposed RBDN architecture obtains comparable results to the state-of-the-art on each of these tasks when used off-the-shelf without any post processing or taskspecific architectural modifications.

上一篇:Gated Feedback Refinement Network for Dense Image Labeling

下一篇:Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...