资源论文Global Optimality in Neural Network Training

Global Optimality in Neural Network Training

2019-12-10 | |  56 |   53 |   0
Abstract The past few years have seen a dramatic increase in the performance of recognition systems thanks to the introduction of deep networks for representation learning. However, the mathematical reasons for this success remain elusive. A key issue is that the neural network training problem is nonconvex, hence optimization algorithms may not return a global minima. This paper provides sufficient conditions to guarantee that local minima are globally optimal and that a local descent strategy can reach a global minima from any initialization. Our conditions require both the network output and the regularization to be positively homogeneous functions of the network parameters, with the regularization being designed to control the network size. Our results apply to networks with one hidden layer, where size is measured by the number of neurons in the hidden layer, and multiple deep subnetworks connected in parallel, where size is measured by the number of subnetworks

上一篇:Geometric deep learning on graphs and manifolds using mixture model CNNs

下一篇:Growing a Brain: Fine-Tuning by Increasing Model Capacity

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...