资源论文Multi-Image Blind Deblurring Using a Coupled Adaptive Sparse Prior

Multi-Image Blind Deblurring Using a Coupled Adaptive Sparse Prior

2019-12-10 | |  96 |   56 |   0

Abstract

This paper presents a robust algorithm for estimating a single latent sharp image given multiple blurry and/or noisy observations. The underlying multi-image blind deconvolution problem is solved by linking all of the observations together via a Bayesian-inspired penalty function which couples the unknown latent image, blur kernels, and noise levels together in a unique way. This coupled penalty function enjoys a number of desirable properties, including a mechanism whereby the relative-concavity or shape is adapted as a function of the intrinsic quality of each blurry observation. In this way, higher quality observations may automatically contribute more to the fifinal estimate than heavily degraded ones. The resulting algorithm, which requires no essential tuning parameters, can recover a high quality image from a set of observations containing potentially both blurry and noisy examples, without knowing a priori the degradation type of each observation. Experimental results on both synthetic and real-world test images clearly demonstrate the effificacy of the proposed method

上一篇:Shading-based Shape Refinement of RGB-D Images

下一篇:Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...