资源论文A Minimal Solution to the Generalized Pose-and-Scale Problem

A Minimal Solution to the Generalized Pose-and-Scale Problem

2019-12-11 | |  61 |   32 |   0

Abstract

We propose a novel solution to the generalized camera pose problem which includes the internal scale of the generalized camera as an unknown parameter. This further generalization of the well-known absolute camera pose problem has applications in multi-frame loop closure. While a well-calibrated camera rig has a fifixed and known scale, camera trajectories produced by monocular motion estimation necessarily lack a scale estimate. Thus, when performing loop closure in monocular visual odometry, or registering separate structure-from-motion reconstructions, we must estimate a seven degree-of-freedom similarity transform from corresponding observations. Existing approaches solve this problem, in specialized confifigurations, by aligning 3D triangulated points or individual camera pose estimates. Our approach handles general confifigurations of rays and points and directly estimates the full similarity transformation from the 2D-3D correspondences. Four correspondences are needed in the minimal case, which has eight possible solutions. The minimal solver can be used in a hypothesize-and-test architecture for robust transformation estimation. Our solver also produces a least-squares estimate in the overdetermined case. The approach is evaluated experimentally on synthetic and real datasets, and is shown to produce higher accuracy solutions to multi-frame loop closure than existing approaches

上一篇:Similarity Comparisons for Interactive Fine-Grained Categorization

下一篇:Collaborative Hashing

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...