资源论文What Camera Motion Reveals About Shape With Unknown BRDF

What Camera Motion Reveals About Shape With Unknown BRDF

2019-12-12 | |  82 |   62 |   0

Abstract

Psychophysical studies show motion cues inform about shape even with unknown reflectance. Recent works in computer vision have considered shape recovery for an object of unknown BRDF using light source or object motions. This paper addresses the remaining problem of determining shape from the (small or differential) motion of the camera, for unknown isotropic BRDFs. Our theory derives a differential stereo relation that relates camera motion to depth of a surface with unknown isotropic BRDF, which generalizes traditional Lambertian assumptions. Under orthographic projection, we show shape may not be constrained in general, but two motions suffice to yield an invariant for several restricte(still unknown) BRDFs exhibited by common materials. For the perspective case, we show that three differential motions suffice to yield surface depth for unknown isotropic BRDF and unknown directional lighting, while additional constraints are obtained with restrictions on BRDF or lighting. The limits imposed by our theory are intrinsic to the shape recovery problem and independent of choice of reconstruction method. We outline with experiments how potential reconstruction methods may exploit our theory. We illustrate trends shared by theories on shape from motion of light, object or camera, relating reconstruction hardness to imaging complexity.

上一篇:Investigating Haze-relevant Features in A Learning Framework for Image Dehazing

下一篇:Random Laplace Feature Maps for Semigroup Kernels on Histograms

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...