资源论文Scale-space Processing Using Polynomial Representations

Scale-space Processing Using Polynomial Representations

2019-12-12 | |  67 |   52 |   0

Abstract

In this study, we propose the application of principal components analysis (PCA) to scale-spaces. PCA is a standard method used in computer vision. The translation of an input image into scale-space is a continuous operation, which requires the extension of conventional finite matrixbased PCA to an infinite number of dimensions. In thisstudy, we use spectral decomposition to resolve this infinite eigenproblem by integration and we propose an approximate solution based on polynomial equations. To clarify its eigensolutions, we apply spectral decomposition to the Gaussian scale-space and scale-normalized Laplacian of Gaussian (LoG) space. As an application of this proposed method, we introduce a method for generating Gaussianblur images and scale-normalized LoG images, where we demonstrate that the accuracy of these images can be very high when calculating an arbitrary scale using a simple linear combination. We also propose a new Scale Invariant Feature Transform (SIFT) detector as a more practical example.

上一篇:Inferring Analogous Attributes

下一篇:Critical Configurations For Radial Distortion Self-Calibration

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...