资源论文Depth Enhancement via Low-rank Matrix Completion

Depth Enhancement via Low-rank Matrix Completion

2019-12-12 | |  77 |   47 |   0

Abstract

Depth captured by consumer RGB-D cameras is often noisy and misses values at some pixels, especially around object boundaries. Most existing methods complete the missing depth values guided by the corresponding color image. When the color image is noisy or the correlation between color and depth is weak, the depth map cannot be properly enhanced. In this paper, we present a depth map enhancement algorithm that performs depth map completion and de-noising simultaneously. Our method is based on the observation that similar RGB-D patches lie in a very low-dimensional subspace. We can then assemble the similar patches into a matrix and enforce this low-rank subspace constraint. This low-rank subspace constraint essentially captures the underlying structure in the RGB-D patches and enables robust depth enhancement against the noise or weak correlation between color and depth. Based on this subspace constraint, our method formulates depth map enhancement as a low-rank matrix completion problem. Since the rank of a matrix changes over matrices, we develop a data-driven method to automatically determine the rank number for each matrix. The experiments on both public benchmarks and our own captured RGB-D images show that our method can effectively enhance depth maps

上一篇:Domain Adaptation on the Statistical Manifold

下一篇:Who Do I Look Like? Determining Parent-Offspring Resemblance via Gated Autoencoders

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...