资源论文Photometric Bundle Adjustment for Dense Multi-View 3D Modeling

Photometric Bundle Adjustment for Dense Multi-View 3D Modeling

2019-12-13 | |  39 |   36 |   0

Abstract

Motivated by a Bayesian vision of the 3D multi-view reconstruction from images problem, we propose a dense 3D reconstruction technique that jointly refines the shape and the camera parameters of a scene by minimizing the photometric reprojection error between a generated model and the observed images, hence considering all pixels in the original images. The minimization is performed using a gradient descent scheme coherent with the shape representation (here a triangular mesh), where we derive evolution equations in order to optimize both the shape and the camera parameters. This can be used at a last refinement step in 3D reconstruction pipelines and helps improving the 3D reconstruction’s quality by estimating the 3D shape and camera calibration more accurately. Examples are shown for multi-view stereo where the texture is also jointly optimized and improved, but could be used for any generative approaches dealing with multi-view reconstruction settings (i.e. depth map fusion, multi-view photometric stereo).

上一篇:Depth and Skeleton Associated Action Recognition without Online Accessible RGB-D Cameras

下一篇:Towards Unified Human Parsing and Pose Estimation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...