资源论文Patch-based Evaluation of Image Segmentation

Patch-based Evaluation of Image Segmentation

2019-12-16 | |  61 |   62 |   0

Abstract

The quantification of similarity between image segmentations is a complex yet important task. The ideal similarity measure should be unbiased to segmentations of different volume and complexity, and be able to quantify and visualise segmentation bias. Similarity measures based on overlap, e.g. Dice score, or surface distances, e.g. Hausdorff distance, clearly do not satisfy all of these properties. To address this problem, we introduce Patch-based Evaluation of Image Segmentation (PEIS), a general method to assess segmentation quality. Our method is based on finding patch correspondences and the associated patch displacements, which allow the estimation of segmentation bias. We quantify both the agreement of the segmentation boundary and the conservation of the segmentation shape. We further assess the segmentation complexity within patches to weight the contribution of local segmentation similarity to the global score. We evaluate PEIS on both synthetic data and two medical imaging datasets. On synthetic segmentations of different shapes, we provide evidence that PEIS, in comparison to the Dice score, produces more comparable scores, has increased sensitivity and estimates segmentation bias accurately. On cardiac magnetic resonance (MR) images, we demonstrate that PEIS can evaluate the performance of a segmentation method independent of the size or complexity of the segmentation under consideration. On brain MR images, we compare five different automatic hippocampus segmentation techniques using PEIS. Finally, we visualise the segmentation bias on a selection of the cases.

上一篇:Similarity-Aware Patchwork Assembly for Depth Image Super-Resolution

下一篇:Learning Fine-grained Image Similarity with Deep Ranking

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...