资源算法yolov3-tf2

yolov3-tf2

2019-12-18 | |  56 |   0 |   0

YoloV3 Implemented in TensorFlow 2.0

This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices.

Key Features

  • TensorFlow 2.0

  • yolov3 with pre-trained Weights

  • yolov3-tiny with pre-trained Weights

  • Inference example

  • Transfer learning example

  • Eager mode training with tf.GradientTape

  • Graph mode training with model.fit

  • Functional model with tf.keras.layers

  • Input pipeline using tf.data

  • Tensorflow Serving

  • Vectorized transformations

  • GPU accelerated

  • Fully integrated with absl-py from abseil.io

  • Clean implementation

  • Following the best practices

  • MIT License

图片.png

Usage

Installation

Conda (Recommended)

# Tensorflow CPUconda env create -f conda-cpu.yml
conda activate yolov3-tf2-cpu# Tensorflow GPUconda env create -f conda-gpu.yml
conda activate yolov3-tf2-gpu

Pip

pip install -r requirements.txt

Nvidia Driver (For GPU)

# Ubuntu 18.04sudo apt-add-repository -r ppa:graphics-drivers/ppa
sudo apt install nvidia-driver-430# Windows/Otherhttps://www.nvidia.com/Download/index.aspx

Convert pre-trained Darknet weights

# yolov3wget https://pjreddie.com/media/files/yolov3.weights -O data/yolov3.weights
python convert.py# yolov3-tinywget https://pjreddie.com/media/files/yolov3-tiny.weights -O data/yolov3-tiny.weights
python convert.py --weights ./data/yolov3-tiny.weights --output ./checkpoints/yolov3-tiny.tf --tiny

Detection

# yolov3python detect.py --image ./data/meme.jpg# yolov3-tinypython detect.py --weights ./checkpoints/yolov3-tiny.tf --tiny --image ./data/street.jpg# webcampython detect_video.py --video 0# video filepython detect_video.py --video path_to_file.mp4 --weights ./checkpoints/yolov3-tiny.tf --tiny# video file with outputpython detect_video.py --video path_to_file.mp4 --output ./output.avi

Training

You need to generate tfrecord following the TensorFlow Object Detection API. For example you can use Microsoft VOTT to generate such dataset. You can also use this script to create the pascal voc dataset.

python train.py --batch_size 8 --dataset ~/Data/voc2012.tfrecord --val_dataset ~/Data/voc2012_val.tfrecord --epochs 100 --mode eager_tf --transfer fine_tune

python train.py --batch_size 8 --dataset ~/Data/voc2012.tfrecord --val_dataset ~/Data/voc2012_val.tfrecord --epochs 100 --mode fit --transfer none

python train.py --batch_size 8 --dataset ~/Data/voc2012.tfrecord --val_dataset ~/Data/voc2012_val.tfrecord --epochs 100 --mode fit --transfer no_output

python train.py --batch_size 8 --dataset ~/Data/voc2012.tfrecord --val_dataset ~/Data/voc2012_val.tfrecord --epochs 10 --mode eager_fit --transfer fine_tune --weights ./checkpoints/yolov3-tiny.tf --tiny

Tensorflow Serving

You can export the model to tf serving

python export_tfserving.py --output serving/yolov3/1/
# verify tfserving graph
saved_model_cli show --dir serving/yolov3/1/ --tag_set serve --signature_def serving_default

The inputs are preprocessed images (see dataset.transform_iamges)

outputs are

yolo_nms_0: bounding boxes
yolo_nms_1: scores
yolo_nms_2: classes
yolo_nms_3: numbers of valid detections

Benchmark (No Training Yet)

Numbers are obtained with rough calculations from detect_video.py

Macbook Pro 13 (2.7GHz i5)

Detection416x416320x320608x608
YoloV31000ms500ms1546ms
YoloV3-Tiny100ms58ms208ms

Desktop PC (GTX 970)

Detection416x416320x320608x608
YoloV374ms57ms129ms
YoloV3-Tiny18ms15ms28ms

AWS g3.4xlarge (Tesla M60)

Detection416x416320x320608x608
YoloV366ms50ms123ms
YoloV3-Tiny15ms10ms24ms

RTX 2070 (credit to @AnaRhisT94)

Detection416x416
YoloV3 predict_on_batch29-32ms
YoloV3 predict_on_batch + TensorRT22-28ms

Darknet version of YoloV3 at 416x416 takes 29ms on Titan X. Considering Titan X has about double the benchmark of Tesla M60, Performance-wise this implementation is pretty comparable.

Implementation Details

Eager execution

Great addition for existing TensorFlow experts. Not very easy to use without some intermediate understanding of TensorFlow graphs. It is annoying when you accidentally use incompatible features like tensor.shape[0] or some sort of python control flow that works fine in eager mode, but totally breaks down when you try to compile the model to graph.

model(x) vs. model.predict(x)

When calling model(x) directly, we are executing the graph in eager mode. Formodel.predict, tf actually compiles the graph on the first run and then execute in graph mode. So if you are only running the model once, model(x) is faster since there is no compilation needed. Otherwise, model.predict or using exported SavedModel graph is much faster (by 2x). For non real-time usage,model.predict_on_batch is even faster as tested by @AnaRhisT94)

GradientTape

Extremely useful for debugging purpose, you can set breakpoints anywhere. You can compile all the keras fitting functionalities with gradient tape using therun_eagerly argument in model.compile. From my limited testing, all training methods including GradientTape, keras.fit, eager or not yeilds similar performance. But graph mode is still preferred since it's a tiny bit more efficient.

@tf.function

@tf.function is very cool. It's like an in-between version of eager and graph. You can step through the function by disabling tf.function and then gain performance when you enable it in production. Important note, you should not pass any non-tensor parameter to @tf.function, it will cause re-compilation on every call. I am not sure whats the best way other than using globals.

absl.py (abseil)

Absolutely amazing. If you don't know already, absl.py is officially used by internal projects at Google. It standardizes application interface for Python and many other languages. After using it within Google, I was so excited to hear abseil going open source. It includes many decades of best practices learned from creating large size scalable applications. I literally have nothing bad to say about it, strongly recommend absl.py to everybody.

Loading pre-trained Darknet weights

very hard with pure functional API because the layer ordering is different in tf.keras and darknet. The clean solution here is creating sub-models in keras. Keras is not able to save nested model in h5 format properly, TF Checkpoint is recommended since its offically supported by TensorFlow.

tf.keras.layers.BatchNormalization

It doesn't work very well for transfer learning. There are many articles and github issues all over the internet. I used a simple hack to make it work nicer on transfer learning with small batches.

What is the output of transform_targets ???

I know it's very confusion but the output is tuple of shape

(
  [N, 13, 13, 3, 6],
  [N, 26, 26, 3, 6],
  [N, 52, 52, 3, 6]
)

where N is the number of labels in batch and the last dimension "6" represents[x, y, w, h, obj, class] of the bounding boxes.

IOU and Score Threshold

the default threshold is 0.5 for both IOU and score, you can adjust them according to your need by setting --yolo_iou_threshold and--yolo_score_threshold flags

Command Line Args Reference

convert.py:
  --output: path to output
    (default: './checkpoints/yolov3.tf')
  --[no]tiny: yolov3 or yolov3-tiny
    (default: 'false')
  --weights: path to weights file
    (default: './data/yolov3.weights')
  --num_classes: number of classes in the model
    (default: '80')
    (an integer)

detect.py:
  --classes: path to classes file
    (default: './data/coco.names')
  --image: path to input image
    (default: './data/girl.png')
  --output: path to output image
    (default: './output.jpg')
  --[no]tiny: yolov3 or yolov3-tiny
    (default: 'false')
  --weights: path to weights file
    (default: './checkpoints/yolov3.tf')
  --num_classes: number of classes in the model
    (default: '80')
    (an integer)

detect_video.py:
  --classes: path to classes file
    (default: './data/coco.names')
  --video: path to input video (use 0 for cam)
    (default: './data/video.mp4')
  --output: path to output video (remember to set right codec for given format. e.g. XVID for .avi)
    (default: None)
  --output_format: codec used in VideoWriter when saving video to file
    (default: 'XVID)  --[no]tiny: yolov3 or yolov3-tiny    (default: 'false')  --weights: path to weights file    (default: './checkpoints/yolov3.tf')  --num_classes: number of classes in the model    (default: '80')    (an integer)train.py:  --batch_size: batch size    (default: '8')    (an integer)  --classes: path to classes file    (default: './data/coco.names')  --dataset: path to dataset    (default: '')  --epochs: number of epochs    (default: '2')    (an integer)  --learning_rate: learning rate    (default: '0.001')    (a number)  --mode: <fit|eager_fit|eager_tf>: fit: model.fit, eager_fit: model.fit(run_eagerly=True), eager_tf: custom GradientTape    (default: 'fit')  --num_classes: number of classes in the model    (default: '80')    (an integer)  --size: image size    (default: '416')    (an integer)  --[no]tiny: yolov3 or yolov3-tiny    (default: 'false')  --transfer: <none|darknet|no_output|frozen|fine_tune>: none: Training from scratch, darknet: Transfer darknet, no_output: Transfer all but output, frozen: Transfer and freeze all,    fine_tune: Transfer all and freeze darknet only    (default: 'none')  --val_dataset: path to validation dataset    (default: '')  --weights: path to weights file    (default: './checkpoints/yolov3.tf')

Change Log

October 1, 2019

  • Updated to Tensorflow to v2.0.0 Release

References

It is pretty much impossible to implement this from the yolov3 paper alone. I had to reference the official (very hard to understand) and many un-official (many minor errors) repos to piece together the complete picture.


上一篇:keras-yolo2

下一篇:yololib

用户评价
全部评价

热门资源

  • Keras-ResNeXt

    Keras ResNeXt Implementation of ResNeXt models...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • spark-corenlp

    This package wraps Stanford CoreNLP annotators ...

  • capsnet-with-caps...

    CapsNet with capsule-wise convolution Project ...

  • inferno-boilerplate

    This is a very basic boilerplate example for pe...