资源论文Deep Networks for Saliency Detection via Local Estimation and Global Search

Deep Networks for Saliency Detection via Local Estimation and Global Search

2019-12-17 | |  84 |   49 |   0

Abstract

This paper presents a saliency detection algorithm by integrating both local estimation and global search. In the local estimation stage, we detect local saliency by using a deep neural network (DNN-L) which learns local patch features to determine the saliency value of each pixel. The estimated local saliency maps are further refifined by exploring the high level object concepts. In the global search stage, the local saliency map together with global contrast and geometric information are used as global features to describe a set of object candidate regions. Another deep neural network (DNN-G) is trained to predict the saliency score of each object region based on the global features. The fifinal saliency map is generated by a weighted sum of salient object regions. Our method presents two interesting insights. First, local features learned by a supervised scheme can effectively capture local contrast, texture and shape information for saliency detection. Second, the complex relationship between different global saliency cues can be captured by deep networks and exploited principally rather than heuristically. Quantitative and qualitative experiments on several benchmark data sets demonstrate that our algorithm performs favorably against the state-of-theart methods.

上一篇:Real-Time Coarse-to-fine Topologically Preserving Segmentation

下一篇:Fast Randomized Singular Value Thresholding for Nuclear Norm Minimization

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...