资源论文Salient Object Detection via Bootstrap Learning

Salient Object Detection via Bootstrap Learning

2019-12-17 | |  102 |   55 |   0

Abstract

We propose a bootstrap learning algorithm for salient object detection in which both weak and strong models are exploited. First, a weak saliency map is constructed based on image priors to generate training samples for a strong model. Second, a strong classififier based on samples directly from an input image is learned to detect salient pixels. Results from multiscale saliency maps are integrated to further improve the detection performance. Extensive experiments on six benchmark datasets demonstrate that the proposed bootstrap learning algorithm performs favorably against the state-of-the-art saliency detection methods. Furthermore, we show that the proposed bootstrap learning approach can be easily applied to other bottom-up saliency models for signifificant improvement.

上一篇:A Convex Optimization Approach to Robust Fundamental Matrix Estimation

下一篇:Efficient Globally Optimal Consensus Maximisation with Tree Search

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...

  • dynamical system ...

    allows to preform manipulations of heavy or bul...