资源论文Salient Object Detection via Bootstrap Learning

Salient Object Detection via Bootstrap Learning

2019-12-17 | |  174 |   102 |   0

Abstract

We propose a bootstrap learning algorithm for salient object detection in which both weak and strong models are exploited. First, a weak saliency map is constructed based on image priors to generate training samples for a strong model. Second, a strong classififier based on samples directly from an input image is learned to detect salient pixels. Results from multiscale saliency maps are integrated to further improve the detection performance. Extensive experiments on six benchmark datasets demonstrate that the proposed bootstrap learning algorithm performs favorably against the state-of-the-art saliency detection methods. Furthermore, we show that the proposed bootstrap learning approach can be easily applied to other bottom-up saliency models for signifificant improvement.

上一篇:A Convex Optimization Approach to Robust Fundamental Matrix Estimation

下一篇:Efficient Globally Optimal Consensus Maximisation with Tree Search

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...