资源论文Beyond Principal Components: Deep Boltzmann Machines for Face Modeling

Beyond Principal Components: Deep Boltzmann Machines for Face Modeling

2019-12-18 | |  31 |   30 |   0

Abstract

The interpretation through synthesis, i.e. Active Appearance Models (AAMs) method, has received considerable attention over the past decades. It aims at explainingface images by synthesizing them via a parameterized model of appearance. It is quite challenging due to appearance variations of human face images, e.g. facial poses, occlusions, lighting, low resolution, etc. Since these variations are mostly non-linear, it is impossible to represent them in a linear model, such as Principal Component Analysis (PCA). This paper presents a novel Deep Appearance Models (DAMs) approach, an effificient replacement for AAMs, to accurately capture both shape and texture of face images under large variations. In this approach, three crucial components represented in hierarchical layers are modeled using the Deep Boltzmann Machines (DBM) to robustly capture the variations of facial shapes and appearances. DAMs are therefore superior to AAMs in inferring a representation for new face images under various challenging conditions. In addition, DAMs have ability to generate a compact set of parameters in higher level representation that can be used for classifification, e.g. face recognition and facial age estimation. The proposed approach is evaluated in facial image reconstruction, facial super-resolution on two databases, i.e. LFPW and Helen. It is also evaluated on FG-NET database for the problem of age estimation

上一篇:Face Alignment by Coarse-to-Fine Shape Searching

下一篇:Uncalibrated Photometric Stereo Based on Elevation Angle Recovery from BRDF Symmetry of Isotropic Materials

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...