资源论文Relaxation-Based Preprocessing Techniques for Markov Random Field Inference

Relaxation-Based Preprocessing Techniques for Markov Random Field Inference

2019-12-20 | |  115 |   99 |   0

Abstract

Markov Random Fields (MRFs) are a widely used graphical model, but the inference problem is NP-hard. For first-order MRFs with binary labels, Dead End Elimination (DEE) [7] and QPBO [2, 14] can find the optimal labeling for some variables; the much harder case of larger label sets has been addressed by Kovtun [16, 17] and related methods [12, 23, 24, 25], which impose substantial computational overhead. We describe an efficient algorithm to correctly label a subset of the variables for arbitrary MRFs, with particularly good performance on binary MRFs. Wepropose a sufficient condition to check if a partial labeling is optimal, which is a generalization of DEE’s purely local test. We give a hierarchy of relaxations that provide larger optimal partial labelings at the cost of additional computa-tion. Empirical studies were conducted on several benchmarks, using expansion moves [4] for inference. Our algorithm runs in a few seconds, and improves the speed of MRFinference with expansion moves by a factor of 1.5 to 12.

上一篇:Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering

下一篇:Min Norm Point Algorithm for Higher Order MRF-MAP Inference

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...