资源论文Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

2019-12-20 | |  61 |   48 |   0

Abstract

We develop new representations and algorithms for three-dimensional (3D) object detection and spatial layout prediction in cluttered indoor scenes. RGB-D images are traditionally described by local geometric features of the 3D point cloud. We propose a cloud of oriented gradient (COG) descriptor that links the 2D appearance and 3D pose of object categories, and thus accurately models how perspective projection affects perceived image boundaries. We also propose a “Manhattan voxel” representation which better captures the 3D room layout geometry of common indoor environments. Effective classification rules are learned via a structured prediction framework that accounts for the intersection-over-union overlap of hypothesized 3D cuboids with human annotations, as well as orientation estimation errors. Contextual relationships among categories and layout are captured via a cascade of classifiers, leading to holistic scene hypotheses with improved accuracy. Our model is learned solely from annotated RGB-D images, without the benefit of CAD models, but nevertheless its performance substantially exceeds the state-of-the-art on the SUN RGB-D database. Avoiding CAD models allows easier learning of detectors for many object categories.

上一篇:The Multiverse Loss for Robust Transfer Learning

下一篇:A Probabilistic Framework for Color-Based Point Set Registration

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to learn...

    The move from hand-designed features to learned...