资源论文DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns

DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns

2019-12-20 | |  81 |   72 |   0

Abstract

The recognition of human actions and the determinationof human attributes are two tasks that call for fine-grainedclassification. Indeed, often rather small and inconspicuous objects and features have to be detected to tell their classesapart. In order to deal with this challenge, we proposea novel convolutional neural network that mines mid-levelimage patches that are sufficiently dedicated to resolve thecorresponding subtleties. In particular, we train a newly designed CNN (DeepPattern) that learns discriminative patchgroups. There are two innovative aspects to this. On the onehand we pay attention to contextual information in an origi-nal fashion. On the other hand, we let an iteration of feature learning and patch clustering purify the set of dedicated patches that we use. We validate our method for action clas-sification on two challenging datasets: PASCAL VOC 2012 Action and Stanford 40 Actions, and for attribute recogni-tion we use the Berkeley Attributes of People dataset. Our discriminative mid-level mining CNN obtains state-of-theart results on these datasets, without a need for annotations about parts and poses.

上一篇:Proposal Flow

下一篇:iLab-20M: A large-scale controlled object dataset to investigate deep learning

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • Shape-based Autom...

    We present an algorithm for automatic detection...