资源论文Inextensible Non-Rigid Shape-from-Motion by Second-Order Cone Programming

Inextensible Non-Rigid Shape-from-Motion by Second-Order Cone Programming

2019-12-20 | |  55 |   30 |   0

Abstract

We present a global and convex formulation for template-less 3D reconstruction of a deforming object with the perspective camera. We show for the first time how to construct a Second-Order Cone Programming (SOCP) problem for Non-Rigid Shape-from-Motion (NRSfM) using the Maximum-Depth Heuristic (MDH). In this regard, we deviate strongly from the general trend of using affine cameras and factorization-based methods to solve NRSfM. In MDH, the points’ depths are maximized so that the distance between neighbouring points in camera space are upper bounded by the geodesic distance. In NRSfM both geodesic and camera space distances are unknown. We show that, nonetheless, given point correspondences and the camera’s intrinsics the whole problem is convex and solvable with SOCP. We show with extensive experiments that our method accurately reconstructs quasi-isometric surfaces from partial views under articulated and strong deformations. It naturally handles missing correspondences, non-smooth objects and is very simple to implement compared to previous methods, with only one free parameter (the neighbourhood size).

上一篇:Solving Temporal Puzzles

下一篇:An efficient Exact-PGA algorithm for constant curvature manifolds

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...