资源论文Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data

Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data

2019-12-23 | |  54 |   47 |   0

Abstract

The way people look in terms of facial attributes (ethnicity, hair color, facial hair, etc.) and the clothes or accessories they wear (sunglasses, hat, hoodies, etc.) is highly dependent on geo-location and weather condition, respectively. This work explores, for the first time, the use of thiscontextual information, as people with wearable cameras walk across different neighborhoods of a city, in order to learn a rich feature representation for facial attribute classification, without the costly manual annotation required by previous methods. By tracking the faces of casual walkers on more than 40 hours of egocentric video, we are able to cover tens of thousands of different identities and automatically extract nearly 5 million pairs of images connected by or from different face tracks, along with their weather and location context, under pose and lighting variations. These image pairs are then fed into a deep network that preserves similarity of images connected by the same track, in order to capture identity-related attribute features, and optimizes for location and weather prediction to capture additional facial attribute features. Finally, the network is fine-tuned with manually annotated samples. We perform an extensive experimental analysis on wearable data and two standard benchmark datasets based on web images (LFWA and CelebA). Our method outperforms by a large margin a network trained from scratch. Moreover, even without using manually annotated identity labels for pre-training as in previous methods, our approach achieves results that are better than the state of the art.

上一篇:Discriminative Multi-modal Feature Fusion for RGBD Indoor Scene Recognition

下一篇:Adaptive 3D Face Reconstruction from Unconstrained Photo Collections

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to learn...

    The move from hand-designed features to learned...