资源论文Learning Multiple Visual Tasks while Discovering their Structure

Learning Multiple Visual Tasks while Discovering their Structure

2019-12-25 | |  51 |   34 |   0

Abstract

Multi-task learning is a natural approach for computer vision applications that require the simultaneous solution of several distinct but related problems, e.g. object detection, classification, tracking of multiple agents, or denoising, to name a few. The key idea is that exploring task relatedness (structure) can lead to improved performances. In this paper, we propose and study a novel sparse, nonparametric approach exploiting the theory of Reproducing Kernel Hilbert Spaces for vector-valued functions. We develop a suitable regularization framework which can be formulated as a convex optimization problem, and is provably solvable using an alternating minimization approach. Empirical tests show that the proposed method compares favorably to state of the art techniques and further allows to recover interpretable structures, a problem of interest in its own right.

上一篇:Joint Inference of Groups, Events and Human Roles in Aerial Videos

下一篇:Scalable Structure from Motion for Densely Sampled Videos

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...