资源论文Deep Gaussian Conditional Random Field Network: A Model-based Deep Network for Discriminative Denoising

Deep Gaussian Conditional Random Field Network: A Model-based Deep Network for Discriminative Denoising

2019-12-27 | |  64 |   46 |   0

Abstract

We propose a novel end-to-end trainable deep network architecture for image denoising based on a Gaussian Conditional Random Field (GCRF) model. In contrast to the existing discriminative denoising methods that train a separate model for each individual noise level, the proposed deep network explicitly models the input noise variance and hence is capable of handling a range of noise levels. Our deep network, which we refer to as deep GCRF network, consists of two sub-networks: (i) a parameter generation network that generates the pairwise potential parameters based on the noisy input image, and (ii) an inference network whose layers perform the computations involved in an iterative GCRF inference procedure. We train two deep GCRF networks (each network operates over a range of noise levels: one for low input noise levels and one for high input noise levels) discriminatively by maximizing the peak signal-to-noise ratio measure. Experiments on Berkeley segmentation and PASCALVOC datasets show that the proposed approach produces results on par with the stateof-the-art without training a separate network for each individual noise level.

上一篇:A Paradigm for Building Generalized Models of Human Image Perception through Data Fusion

下一篇:A Multi-Stream Bi-Directional Recurrent Neural Network for Fine-Grained Action Detection

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...