资源论文A Text Detection System for Natural Scenes with Convolutional Feature Learning and Cascaded Classification

A Text Detection System for Natural Scenes with Convolutional Feature Learning and Cascaded Classification

2019-12-27 | |  65 |   37 |   0

Abstract

We propose a system that finds text in natural scenes using a variety of cues. Our novel data-driven method incorporates coarse-to-fine detection of character pixels using convolutional features (Text-Conv), followed by extracting connected components (CCs) from characters using edge and color features, and finally performing a graph-based segmentation of CCs into words (Word-Graph). For TextConv, the initial detection is based on convolutional feature maps similar to those used in Convolutional Neural Networks (CNNs), but learned using Convolutional k-means. Convolution masks defined by local and neighboring patch features are used to improve detection accuracy. The WordGraph algorithm uses contextual information to both improve word segmentation and prune false character/word detections. Different definitions for foreground (text) regions are used to train the detection stages, some based on bounding box intersection, and others on bounding box and pixel intersection. Our system obtains pixel, character, and word detection f-measures of 93.14%, 90.26%, and 86.77% respectively for the ICDAR 2015 Robust Reading Focused Scene Text dataset, out-performing state-of-the-art systems. This approach may work for other detection targets with homogenous color in natural scenes.

上一篇:Equiangular Kernel Dictionary Learning with Applications to Dynamic Texture Analysis

下一篇:Multi-Oriented Text Detection with Fully Convolutional Networks

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...