资源论文GEOMETRIC INSIGHTS INTO THE CONVERGENCE OFN ONLINEAR TD LEARNING

GEOMETRIC INSIGHTS INTO THE CONVERGENCE OFN ONLINEAR TD LEARNING

2019-12-30 | |  85 |   47 |   0

Abstract
While there are convergence guarantees for temporal difference (TD) learning when using linear function approximators, the situation for nonlinear models is far less understood, and divergent examples are known. Here we take a first step towards extending theoretical convergence guarantees to TD learning with nonlinear function approximation. More precisely, we consider the expected learning dynamics of the TD(0) algorithm for value estimation. As the step-size converges to zero, these dynamics are defined by a nonlinear ODE which depends on the geometry of the space of function approximators, the structure of the underlying Markov chain, and their interaction. We find a set of function approximators that includes ReLU networks and has geometry amenable to TD learning regardless of environment, so that the solution performs about as well as linear TD in the worst case. Then, we show how environments that are more reversible induce dynamics that are better for TD learning and prove global convergence to the true value function for well-conditioned function approximators. Finally, we generalize a divergent counterexample to a family of divergent problems to demonstrate how the interaction between approximator and environment can go wrong and to motivate the assumptions needed to prove convergence.

上一篇:INCREMENTAL RNN: ADYNAMICAL VIEW.

下一篇:AF UNCTION SPACE VIEW OF BOUNDED NORM INFI -NITE WIDTH RE LU NETS :T HE MULTIVARIATE CASE

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...