资源论文SAMPLING -F REE LEARNING OFBAYESIAN QUANTIZED NEURAL NETWORKS

SAMPLING -F REE LEARNING OFBAYESIAN QUANTIZED NEURAL NETWORKS

2019-12-30 | |  60 |   44 |   0

Abstract

Bayesian learning of model parameters in neural networks is important in scenarios where estimates with well-calibrated uncertainty are important. In this paper, we propose Bayesian quantized networks (BQNs), quantized neural networks (QNNs) for which we learn a posterior distribution over their discrete parameters. We provide a set of efficient algorithms for learning and prediction in BQNs without the need to sample from their parameters or activations, which not only allows for differentiable learning in QNNs, but also reduces the variance in gradients. We evaluate BQNs on MNIST, Fashion-MNIST, KMNIST and CIFAR10 image classification datasets. compared against bootstrap ensemble of QNNs (E-QNN). We demonstrate BQNs achieve both lower predictive errors and better-calibrated uncertainties than E-QNN (with less than 20% of the negative log-likelihood).

上一篇:CRITICAL INITIALISATION IN CONTINUOUS APPROXI -MATIONS OF BINARY NEURAL NETWORKS

下一篇:GRAPH NEURAL NETWORKS EXPONENTIALLY LOSEE XPRESSIVE POWER FOR NODE CLASSIFICATION

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...