资源论文BUDGETED TRAINING :R ETHINKING DEEP NEURAL NETWORK TRAININGU NDER RESOURCE CONSTRAINTS

BUDGETED TRAINING :R ETHINKING DEEP NEURAL NETWORK TRAININGU NDER RESOURCE CONSTRAINTS

2019-12-30 | |  89 |   52 |   0

Abstract

In most practical settings and theoretical analyses, one assumes that a model can be trained until convergence. However, the growing complexity of machine learning datasets and models may violate such assumptions. Indeed, current approaches for hyper-parameter tuning and neural architecture search tend to be limited by practical resource constraints. Therefore, we introduce a formal setting for studying training under the non-asymptotic, resource-constrained regime, i.e., budgeted training. We analyze the following problem: “given a dataset, algorithm, and fixed resource budget, what is the best achievable performance?” We focus on the number of optimization iterations as the representative resource. Under such a setting, we show that it is critical to adjust the learning rate schedule according to the given budget. Among budget-aware learning schedules, we find simple linear decay to be both robust and high-performing. We support our claim through extensive experiments with state-of-the-art models on ImageNet (image classification), Kinetics (video classification), MS COCO (object detection and instance segmentation), and Cityscapes (semantic segmentation). We also analyze our results and find that the key to a good schedule is budgeted convergence, a phenomenon whereby the gradient vanishes at the end of each allowed budget. We also revisit existing approaches for fast convergence and show that budgetaware learning schedules readily outperform such approaches under (the practical but under-explored) budgeted training setting.

上一篇:STABLE RANK NORMALIZATION FOR IMPROVED GEN -ERALIZATION IN NEURAL NETWORKS AND GAN S

下一篇:EFFICIENT PROBABILISTIC LOGIC REASONING WITHG RAPH NEURAL NETWORKS

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...